Calcium-dependence of synexin binding may determine aggregation and fusion of lamellar bodies.
نویسندگان
چکیده
Synexin (annexin VII) is a member of the annexin family of calcium and phospholipid binding proteins that promote calcium-dependent aggregation and fusion of lipid vesicles or secretory granules. We have previously suggested that synexin may be involved in membrane fusion processes during exocytosis of lung surfactant since it promotes fusion in vitro of lamellar bodies with plasma membranes. In this study, we characterized calcium-dependency of synexin binding to lamellar bodies and plasma membranes, since such binding is the initial, and, therefore, may be the rate-limiting step in membrane aggregation and fusion. The binding of biotinylated synexin to lamellar bodies and plasma membranes increased in a calcium-dependent manner reaching a maximum at approx. 200 microM Ca2+. Binding to lamellar bodies was completely inhibited by unlabelled synexin. Gel-overlay analysis showed that synexin bound to an approx. 76 kDa protein in the lamellar body and plasma membrane fractions. The calcium kinetics were noticeably similar for synexin binding to lamellar bodies and plasma membranes, aggregation of lamellar bodies, and fusion of lamellar bodies with lipid vesicles. At low calcium concentrations, aggregation of lamellar bodies could be increased with increasing synexin concentration, and arachidonic acid increased all three parameters (binding, aggregation, and fusion) in a similar manner. The effects of calcium and arachidonic acid on these three parameters suggest that synexin binding to lamellar bodies may be a rate-determining step for fusion during surfactant secretion. Furthermore, at near physiological calcium levels, the membrane fusion may be enhanced by elevated concentrations of synexin and polyunsaturated fatty acids.
منابع مشابه
Synexin and GTP increase surfactant secretion in permeabilized alveolar type II cells.
We have previously suggested that synexin (annexin VII), a Ca(2+)-dependent phospholipid binding protein, may have a role in surfactant secretion, since it promotes membrane fusion between isolated lamellar bodies (the surfactant-containing organelles) and plasma membranes. In this study, we investigated whether exogenous synexin can augment surfactant phosphatidylcholine (PC) secretion in syne...
متن کاملSelf-association of synexin in the presence of calcium. Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates.
It has been proposed (Creutz, C. E., Pazoles, C. J., and Pollard, H. B. (1978) J. Biol. Chem. 253, 2858-2866) that synexin, an adrenal medullary protein that causes Ca2+-dependent aggregation of isolated chromaffin granules, might be the intracellular receptor for Ca2+ in the process of exocytosis. We now report that Ca2+ interacts directly with isolated synexin, inducing rapid self-association...
متن کاملA molecular basis for synexin-driven, calcium-dependent membrane fusion.
Membranes of secretory vesicles fuse with each other and with plasma membranes during exocytosis in many different cell types. The probable role of calcium in the process is now widely accepted, and it is possible that at least one cytosolic mediator of calcium action is synexin. Synexin is a 47,000 Mr calcium-binding protein, initially discovered in the bovine adrenal medulla, which binds to g...
متن کاملSynaptotagmin-7 links fusion-activated Ca2+ entry and fusion pore dilation
Ca(2+)-dependent regulation of fusion pore dilation and closure is a key mechanism determining the output of cellular secretion. We have recently described 'fusion-activated' Ca(2+) entry (FACE) following exocytosis of lamellar bodies in alveolar type II cells. FACE regulates fusion pore expansion and facilitates secretion. However, the mechanisms linking this locally restricted Ca(2+) signal a...
متن کاملRED CELLS Ca11-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin
Cytosolic Ca11 induces the shedding of microvesicles and nanovesicles from erythrocytes. Atomic force microscopy was used to determine the sizes of these vesicles and to resolve the patchy, fine structure of the microvesicle membrane. The vesicles are highly enriched in glycosyl phosphatidylinositol–linked proteins, free of cytoskeletal components, and depleted of the major transmembrane protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 322 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1997